5.1.1c Find the angle between $\mathbf{v} = (4,1)^T$ and $\mathbf{w} = (3,2)^T$.

Solution: We have $\mathbf{v}^T\mathbf{w} = 14$, $||\mathbf{v}|| = \sqrt{17}$, and $||\mathbf{w}|| = \sqrt{13}$, so the angle between \mathbf{v} and \mathbf{w} is $\theta = \arccos \frac{14}{\sqrt{221}} \approx 0.343$ radians.

- **5.1.2c** Using the same vectors as in the preceding problem, the vector projection of \mathbf{v} onto \mathbf{w} is $\frac{14}{13}\mathbf{w} = (42/13, 28/13)^T$. The vector projection of \mathbf{w} onto \mathbf{v} is $\frac{14}{17}\mathbf{v} = (56/17, 14/17)^T$.
- **5.1.3** For each pair of vectors \mathbf{x} and \mathbf{y} , compute the vector projection \mathbf{p} of \mathbf{x} onto \mathbf{y} , and verify that \mathbf{p} is orthogonal to $\mathbf{x} \mathbf{p}$.
 - (b) $\mathbf{x} = (3,5)^T$, $\mathbf{y} = (1,1)^T$
 - (d) $\mathbf{x} = (2, -5, 4)^T$, $\mathbf{y} = (1, 2, -1)^T$.

Solution:

- (b) The vector projection is $\mathbf{p} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}} \mathbf{y} = 4\mathbf{y} = (4,4)^T$. Clearly \mathbf{p} is orthogonal to $\mathbf{x} \mathbf{p} = (-1,1)^T$.
- (d) The vector projection is $\mathbf{p} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}} \mathbf{y} = -2\mathbf{y} = (-2, -4, 2)^T$. As in (b), the verification of orthogonality is trivial.
- **5.1.5** Find the point on the line y = 2x that is closest to the point (5, 2).

Solution: We want to find the vector projection of $\mathbf{v} = (5,2)^T$ onto some vector \mathbf{w} that is colinear with the given line. Any choice will do, say $\mathbf{w} = (1,2)^T$. The projection is $\frac{\mathbf{v}^T \mathbf{w}}{\mathbf{w}^T \mathbf{w}} \mathbf{w} = \frac{9}{5} \mathbf{w} = (9/5, 18/5)^T$.

5.1.7 Find the distance from the point (1,2) to the line 4x - 3y = 0.

Solution: Let $\mathbf{x} = (1,2)^T$. We may choose any vector \mathbf{y} that is contained in the line 4x - 3y = 0; the vector $(3,4)^T$ will do nicely. We may proceed in two ways. Method 1: find the vector projection p of \mathbf{x} onto \mathbf{y} , then compute the length of $\mathbf{x} - \mathbf{p}$. Method 2: find a vector \mathbf{z} orthogonal to \mathbf{y} , and compute the scalar projection of \mathbf{x} onto \mathbf{z} . The distance in question is the absolute value of the scalar projection. This is marginally the easier approach. The line through the origin perpendicular to 4x - 3y = 0 is the line 3x + 4y = 0. We can choose $\mathbf{z} = (4, -3)^T$. It follows that the scalar projection of \mathbf{x} onto \mathbf{z} is given by $\alpha = \frac{\mathbf{x}^T \mathbf{z}}{||\mathbf{z}||} = -2/5$, and the distance is 2/5 = 0.4 units.

- **5.1.8** In each of the following, find the equation of the plane normal to the given vector \mathbf{N} and passing through the point P_0 .
 - (a) $\mathbf{N} = (2, 4, 3)^T, P_0 = (0, 0, 0).$

Solution: We know that, for any point P = (x, y, z) in the desired plane, the vector PP_0 is orthogonal to \mathbf{N} . It follows that the equation of the plane is

$$\mathbf{N}^T P P_0 = 2(x - x_0) + 4(y - y_0) + 3(z - z_0) = 2x + 4y + 3z = 0.$$

(c) $\mathbf{N} = (0, 0, 1)^T, P_0 = (3, 2, 4).$

Solution: As in (a), the desired equation is

$$\mathbf{N}^T P P_0 = 0(x - x_0) + 0(y - y_0) + 1(z - z_0) = z - 4 = 0.$$

5.1.9 Find the distance from the point (1,1,1) to the plane 2x + 2y + z = 0.

Solution: The given plane is normal to $(2,2,1)^T$ and passes through the origin. Since we want only the distance, it is the scalar projection α of $\mathbf{x} = (1,1,1)^T$ onto $\mathbf{y} = (2,2,1)^T$ that we're after. This is given by $\alpha = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|} = \frac{5}{3}$.

- **5.1.11** If $\mathbf{x} = (x_1, x_2)^T$, $\mathbf{y} = (y_1, y_2)^T$, and $\mathbf{z} = (z_1, z_2)^T$ are elements of \mathbf{R}^2 , prove:
 - (a) $\mathbf{x}^T \mathbf{x} \ge 0$.

Solution: This follows directly from the definition: $\mathbf{x}^T\mathbf{x} = x_1^2 + x_2^2$. Since the square of a real number is nonnegative, then so must be $\mathbf{x}^T\mathbf{x}$.

(b) $\mathbf{x}^T \mathbf{y} = \mathbf{y}^T \mathbf{x}$.

Solution: This, too, follows from the definition and properties of real numbers:

$$\mathbf{x}^T \mathbf{y} = x_1 y_1 + x_2 y_2 = y_1 x_1 + y_2 x_2 = \mathbf{y}^T \mathbf{x}.$$

5.1.12 If \mathbf{u} and \mathbf{v} are vectors in \mathbf{R}^2 , show that $||\mathbf{u} + \mathbf{v}||^2 \le (||\mathbf{u}|| + ||\mathbf{v}||)^2$ and hence that $||\mathbf{u} + \mathbf{v}|| \le (||\mathbf{u}|| + ||\mathbf{v}||)$. When does equality hold? Give a geometric interpretation of the inequality.

Solution: The way that this problem is stated, it is tempting to take a componentwise view of \mathbf{u} and \mathbf{v} . Such an approach might lead to the following solution:

Assume that $\mathbf{u} = (u_1, u_2)^T$ and $\mathbf{v} = (v_1, v_2)T$. Then

$$||\mathbf{u} + \mathbf{v}||^2 = (u_1 + v_1)^2 + (u_2 + v_2)^2 = u_1^2 + v_1^2 + u_2^2 + v_2^2 + 2u_1v_1 + 2u_2v_2,$$

while

$$\left(||\mathbf{u}|| + ||\mathbf{v}||\right)^2 = \left((u_1^2 + u_2^2)^{1/2} + (v_1^2 + v_2^2)^{1/2}\right)^2 = u_1^2 + u_2^2 + v_1^2 + v_2^2 + 2(u_1^2 + u_2^2)^{1/2}(v_1^2 + v_2^2)^{1/2}.$$

So it all hinges on a new inequality,

$$u_1v_1 + u_2v_2 \le (u_1^2 + u_2^2)^{1/2}(v_1^2 + v_2^2)^{1/2}.$$

This might seem difficult to verify unless one notices that this can be rewritten as

$$\mathbf{u}^T \mathbf{v} \le ||\mathbf{u}|| ||\mathbf{v}||,$$

which is precisely the Cauchy-Schwarz inequality.

But if it all hinges on Cauchy-Schwarz, is there an easier way? Yes. We can take the matrix point of view of our vectors \mathbf{u} and \mathbf{v} . Here is the result:

Proof:

$$||\mathbf{u} + \mathbf{v}||^{2} = (\mathbf{u} + \mathbf{v})^{T}(\mathbf{u} + \mathbf{v})$$

$$= \mathbf{u}^{T}\mathbf{u} + \mathbf{v}^{T}\mathbf{v} + 2\mathbf{u}^{T}\mathbf{v}$$

$$\leq \mathbf{u}^{T}\mathbf{u} + \mathbf{v}^{T}\mathbf{v} + 2||\mathbf{u}||||\mathbf{v}||$$

$$= ||\mathbf{u}||^{2} + ||\mathbf{v}||^{2} + 2||\mathbf{u}||||\mathbf{v}||$$

$$= (||\mathbf{u}|| + ||\mathbf{v}||)^{2},$$

where the inequality in line 3 is the Cauchy-Schwarz inequality.

The second method is not limited to \mathbb{R}^2 , but holds wherever the Cauchy-Schwarz inequality holds, and is therefore the more powerful of the two.

Regardless which approach was used, it follows that $||\mathbf{u} + \mathbf{v}|| \le (||\mathbf{u}|| + ||\mathbf{v}||)$. Equality holds when either (a) one or both of \mathbf{u}, \mathbf{v} is the zero vector, or (b) either is a scalar multiple of the other. Geometrically, this is the triangle inequality in \mathbf{R}^2 .